Structural Equation Models with Social Network Data

Zhiyong Zhang Lab for Big Data Methodology University of Notre Dame

> APA Convention August 8, 2025

Structural equation models

- Structural equation models
- Social network analysis

- Structural equation models
- Social network analysis
- An example data set

- Structural equation models
- Social network analysis
- An example data set
- Structural equation modeling with social networks

- Structural equation models
- Social network analysis
- An example data set
- Structural equation modeling with social networks
- Four examples with code

- Structural equation models
- Social network analysis
- An example data set
- Structural equation modeling with social networks
- Four examples with code
- Discussion and future directions

Structural Equation Models

- Structural equation models are a collection of models:
 - Regression models
 - Mediation models
 - ▶ Factor models
 - ▶ MIMIC models

Structural Equation Models

- Structural equation models are a collection of models:
 - Regression models
 - Mediation models
 - ▶ Factor models
 - ▶ MIMIC models
- It synchronizes different models in the same general framework and allows flexible extension of them.

Structural Equation Models

- Structural equation models are a collection of models:
 - Regression models
 - Mediation models
 - ▶ Factor models
 - MIMIC models
- It synchronizes different models in the same general framework and allows flexible extension of them.
- It frees researchers from estimating a model to focus on "building a model or theory."

Path diagram

- A graphical representation of a SEM.
- Squares or rectangles: observed variables, data
- o Circles or ovals: latent variables, factors, errors
- One-headed arrows: factor loadings, regression coefficients
- Two-headed arrows: variances, error variances, covariance

Social network analysis

Social network analysis is a popular interdisciplinary research topic in statistics, sociology, political science, and recently psychology (e.g., Hoff, Raftery, & Handcock, 2002; Saul & Filkov, 2007; Schaefer, Adams, & Haas, 2013; Wasserman & Faust, 1994).

Social network analysis

- Social network analysis is a popular interdisciplinary research topic in statistics, sociology, political science, and recently psychology (e.g., Hoff, Raftery, & Handcock, 2002; Saul & Filkov, 2007; Schaefer, Adams, & Haas, 2013; Wasserman & Faust, 1994).
- Can assess structures or relationships through connections between entities/nodes/subjects in a bounded network.
 - ▶ Economics: How are the social, economic, and technological worlds are connected?
 - ▶ Politics: How do social networks influence individual's political preference?
 - Epidemiology: Social network analysis was used to analyze the emergence of infectious diseases.
 - Sociology and Psychology: What are the factors that explain the patterns in a social network?
 - Education: Social network analysis is useful in detecting and preventing bullying among students.

Example data

 Data were collected from 180 college students in a 4-year college in Shandong, China.

Example data

- Data were collected from 180 college students in a 4-year college in Shandong, China.
- A sample of 162 participants: 90 female and 72 male students.

Example data

- Data were collected from 180 college students in a 4-year college in Shandong, China.
- A sample of 162 participants: 90 female and 72 male students.
- Basic information
 - ▶ Three waves: 2017, 2018, 2019 (1 year after graduation)
 - Average age: 21.64 years (SD=0.86) at wave 1
 - Weight and height
 - Number of WeChat friends
 - Academic performance

Psychological and behavior data

- Big five personality measured by the 20-item Mini-IPIP (Donnellan et al., 2006)
- Depression measured by the Personal Health Questionnaire (7 items, Kroenke et al., 2009)
- $^{\circ}$ Loneliness measured by the UCLA loneliness scale (10 items, Russell et al., 1978)
- Happiness measured by the subjective happiness scale (4 items, Lyubomirsky and Lepper, 1999).

Psychological and behavior data

- Big five personality measured by the 20-item Mini-IPIP (Donnellan et al., 2006)
- Depression measured by the Personal Health Questionnaire (7 items, Kroenke et al., 2009)
- Loneliness measured by the UCLA loneliness scale (10 items, Russell et al., 1978)
- Happiness measured by the subjective happiness scale (4 items, Lyubomirsky and Lepper, 1999).
- Alcohol use
 - ▶ Do you drink alcohol?
 - How many times have you drunk alcohol in the past 30 days?
- Smoking
 - Do you smoke?
 - ▶ If you smoke, how many cigars on average each day do you smoke in the past 30 days?

Descriptive statistics

The second secon							
Name	Mean	Median	SD	Minimum	Maximum		
Gender	Male 7	'4 (45%)	Female 91 (55%)				
Age	21.64	22	0.855	18	24		
BMI	21.51	20.31	3.848	15.4	39.52		
GPA	3.273	3.285	0.488	1.173	4.22		
WeChat friends	165	106	182	23	1000		
Extroversion	2.914	3	0.786	1	5		
Agreeableness	3.556	3.5	0.613	1.75	5		
Conscientiousness	3.532	3.5	0.697	2	5		
Neuroticism	2.876	2.75	0.638	1	4.75		
Imagination	3.538	3.5	0.687	1.5	5		
Depression	0.780	0.714	0.418	0	1.857		
Loneliness	1.128	1.1	0.567	0	2.6		
Happiness	4.935	4.75	0.868	2.5	7		
Smoking	Yes 43	3 (36%)		No 122 (64	1%)		
Alcohol use	Yes 68	8 (41%)		No 97 (59	%)		

Friendship network

Each student was given a roster of all the students in the study and was asked to report his/her acquaintanceship with every others. The friendship is measured on a 5-point Likert scale

Friendship network

Each student was given a roster of all the students in the study and was asked to report his/her acquaintanceship with every others. The friendship is measured on a 5-point Likert scale

- 1. I have never heard about the student.
- 2. I heard about the student but had no personal interaction with her/him.
- 3. I have met the student a few times but he/she is not a friend of mine.
- 4. The student is a friend of mine.
- 5. The student is one of my best friends.

Friendship network

Each student was given a roster of all the students in the study and was asked to report his/her acquaintanceship with every others. The friendship is measured on a 5-point Likert scale

- 1. I have never heard about the student.
- 2. I heard about the student but had no personal interaction with her/him.
- 3. I have met the student a few times but he/she is not a friend of mine.
- 4. The student is a friend of mine.
- 5. The student is one of my best friends.

Network plot - friends / best friends

id	p1	p2	p3	p4	p5	p6	gender	age	smoke	alcohol	extraversion
p1	NA	0	1	1	0	1	M	20	Y	Υ	1.9
p2	0	NA	1	0	1	0	F	21	N	Y	8.0
p3	1	1	NA	0	1	1	F	20	N	Ν	0.7
p4	1	0	0	NA	0	1	M	19	N	Y	0.5
p5	0	1	1	0	NA	1	M	20	N	Y	2.1
p6	1	0	1	1	1	NA	M	21	Υ	Ν	2.3

id	p1	p2	р3	p4	p5	p6	gender	age	smoke	alcohol	extraversion
p1	NA	0	1	1	0	1	M	20	Y	Υ	1.9
p2	0	NA	1	0	1	0	F	21	N	Y	0.8
р3	1	1	NA	0	1	1	F	20	N	Ν	0.7
p4	1	0	0	NA	0	1	M	19	N	Υ	0.5
p5	0	1	1	0	NA	1	M	20	N	Υ	2.1
p6	1	0	1	1	1	NA	M	21	Υ	N	2.3

Network Data

id	p1	p2	р3	p4	p5	p6	gender	age	smoke	alcohol	extraversion
p1	NA	0	1	1	0	1	M	20	Υ	Y	1.9
p2	0	NA	1	0	1	0	F	21	Ν	Υ	0.8
p3	1	1	NA	0	1	1	F	20	Ν	Ν	0.7
p4	1	0	0	NA	0	1	M	19	Ν	Υ	0.5
p5	0	1	1	0	NA	1	M	20	Ν	Υ	2.1
p6	1	0	1	1	1	NA	M	21	Υ	Ν	2.3

Predictors

id	p1	p2	р3	p4	p5	p6	gender	age	smoke	alcohol	extraversion
p1	NA	0	1	1	0	1	M	20	Υ	Y	1.9
p2	0	NA	1	0	1	0	F	21	Ν	Υ	8.0
p3	1	1	NA	0	1	1	F	20	Ν	Ν	0.7
p4	1	0	0	NA	0	1	M	19	Ν	Υ	0.5
p5	0	1	1	0	NA	1	M	20	Ν	Υ	2.1
p6	1	0	1	1	1	NA	M	21	Υ	N	2.3

Predictors or outcomes

Modeling networks

• Traditional network analysis often focuses on modeling the network itself.

Modeling networks

• Traditional network analysis often focuses on modeling the network itself.

 Exponential random graph model (ERGM; Anderson, Wasserman, & Crouch, 1999; Frank & Strauss, 1986) treats the entire social network as a random variable and explains the probability of networks using their local features such as triangle counts and node degrees.

Latent space models (Hoff, 2002)

$$\begin{cases} y_{ij} & \sim \mathsf{Bernoulli}(p_{ij}) \\ \mathsf{logit}(p_{ij}) & = \alpha - ||\mathbf{z}_i - \mathbf{z}_j|| \end{cases}$$

where

- \circ α is a constant,
- \circ \mathbf{z}_i is the latent position vector of node i, and
- $||\mathbf{z}_i \mathbf{z}_j||$ is the distance of node i and node j.

Latent space models (Hoff, 2002)

$$\begin{cases} y_{ij} & \sim \mathsf{Bernoulli}(p_{ij}) \\ \mathsf{logit}(p_{ij}) & = \alpha - ||\mathbf{z}_i - \mathbf{z}_j|| \end{cases}$$

where

- \circ α is a constant,
- \circ \mathbf{z}_i is the latent position vector of node i, and
- $||\mathbf{z}_i \mathbf{z}_j||$ is the distance of node i and node j.

 Network as outcomes: Friendship network can be predicted by gender, age, personality and other variables.

- Network as outcomes: Friendship network can be predicted by gender, age, personality and other variables.
- Network as predictors: Friendship network can predict depression, loneliness, alcohol use, and other outcomes.

- Network as outcomes: Friendship network can be predicted by gender, age, personality and other variables.
- Network as predictors: Friendship network can predict depression, loneliness, alcohol use, and other outcomes.
- Network as mediators: Friendship network can server as a mediator or intermediate variable between two variables.

- Network as outcomes: Friendship network can be predicted by gender, age, personality and other variables.
- Network as predictors: Friendship network can predict depression, loneliness, alcohol use, and other outcomes.
- Network as mediators: Friendship network can server as a mediator or intermediate variable between two variables.
- Easy to extend: Longitudinal and dynamic models.

Model estimation

- A two-stage method is used to estimate the model.
- The key is to match the dimensions of the network data and the non-network data.
- Both node-based method and edge-based method can be used.

Model estimation

- A two-stage method is used to estimate the model.
- The key is to match the dimensions of the network data and the non-network data.
- Both node-based method and edge-based method can be used.
- We have developed both an R package networksem and an online app to facilitate the model estimation.

Node-based method

_											
id	p1	p2	p3	p4	р5	р6					
p1	NA	0	1	1	0	1					
p2	0	NA	1	0	1	0					
р3	1	1	NA	0	1	1					
p4	1	0	0	NA	0	1					
p5	0	1	1	0	NA	1					
p6	1	0	1.	1	1	NA					
			deg	ree	clos	eness	gender	age	smoke	alcohol	extraversion
			7	2	0.	143	М	20	Υ	Υ	1.9
			7	2	0.	111	F	21	N	Υ	8.0
			4	1	0.	167	F	20	N	N	0.7
			2	2	0.	111	М	19	N	Υ	0.5
			3	3	0.	143	М	20	N	Υ	2.1
			4	1	0.	167	М	21	Υ	N	2.3

Edge-based method

id	p1	p2	рЗ	p4	p5	p6	gender	age	smoke	alcohol	extraversion
p1	NA	0	1	1	0	1	М	20	Υ	Y	1.9
p2	0	NA	1	0	1	0	F	21	N	Y	8.0
рЗ	1	1	NA	0	1	1	F	20	N	Ν	0.7
p4	1	0	0	NA	0	1	М	19	N	Υ	0.5
р5	0	1	1	0	NA	1	М	20	N	Υ	2.1
p6	1	0	1	1	1	NA	М	21	Υ	Ν	2.3
							+				
						Node1	Node 2	Edge	age.diff	ext.avg	
						p1	p2	0	1	1.35	
						p1	р3	1	0	1.3	
						p1	p4	1	-1	1.2	
						p1	p5	0	0	2	
						p1	p6	1	1	2.1	
						p2	р3	1	1	1.5	
						p2	p4	0	2	1.3	
						р5	p6	1	-1	2.2	
						_					

Example: Node-based method through network statistics

- Degree: number of connections to other nodes, a measure of popularity
- Closeness: how close a node is to all other nodes, socially central or well-integrated
- Betweenness: how often a node lies on the shortest paths between other nodes, social bridge, influence between groups

id	p1	p2	p3	p4	р5	р6					
p1	NA	0	1	1	0	1					
p2	0	NA	1	0	1	0					
р3	1	1	NA	0	1	1					
p4	1	0	0	NA	0	1					
р5	0	1	1	0	NA	1					
р6	1	0	1	1	1	NA					
				1							
			deg	ree	clos	eness	gender	age	smoke	alcohol	extraversion
			2	2	0.	143	М	20	Υ	Υ	1.9
			2	2	0.	111	F	21	N	Υ	0.8
					_	407		-00	N.I.	N.I.	0.7
			4	1	0.	167	F	20	N	N	0.7
			2			111	M	19	N N	Y	0.7
				2	0.		· ·				
			2	2	0. 0.	111	M	19	N	Y	0.5

Example: path diagram

• Use the degree from the friendship network as a mediator.

Data

- Mini-IPIP (International Personality Item Pool; Donnellan et al., 2006)
- Extroversion factor:
 - ▷ 1: Don't talk a lot.
 - ▷ 6: Keep in the background.
 - ▶ 11: Am the life of the party.
 - ▶ 16: Talk to a lot of different people at parties.
- Depression: Personal Health Questionnaire (PHQ; Kroenke et al., 2009). Only 7 items (removed item 6 & 9).
- Friendship: self-reported, either friend or not.

Data organization

To use our R package networksem for analysis, data need to be organized as a list.

```
> str(friend_data)
List of 2
$ network :List of 1
  ..$ friends: num [1:165, 1:165] 0 1 1 1 1 1 1 1 1 ...
$ nonnetwork:'data.frame': 165 obs. of 11 variables:
  ..$ personality1 : int [1:165] 3 3 4 3 1 3 2 3 4 3 ...
  ..$ personality6 : int [1:165] 3 1 4 3 1 4 3 5 4 5 ...
  ..$ personality11: int [1:165] 3 4 4 4 2 1 5 3 2 1 ...
  ..$ personality16: int [1:165] 3 3 3 4 4 3 3 1 2 1 ...
                   : int [1:165] 1 0 1 1 1 1 0 2 2 1 ...
  ..$ depress1
                   : int [1:165] 0 0 1 1 2 2 0 0 0 1 ...
  ..$ depress2
                   : int [1:165] 0 1 0 1 1 1 0 0 1 0
  ..$ depress3
  ..$ depress4
                   : int [1:165] 0 0
                   : int [1:165] 0 0
  ..$ depress5
                   : int [1:165] 0 0 0 0 3 1 0 0 0 1
  ..$ depress6
                   . ... [4.405] 0 0 0 0 0 0 1 4
   Φ -1 - - - - - - - 7
```

Model specification

- The model specification used by the R package lavaan can be utilized here.
- In the model, a network variable can be directly used. The name should match the one used in the network list of the data.

Model estimation

 To estimate the model, the function sem.net from the networksem package can be used.

```
fit <- sem.net(model = ex1.model, data = friend_data, std.
    lv = T, netstats = 'degree', netstats.rescale = TRUE)</pre>
```

- o sem.net conducts the node-based analysis.
- The required inputs include the "model" and the "data".
- Different network statistics can be used, here, "degree". Multiple network statistics can be used at the same time.
- std.lv specifies whether to standardize the latent variables.

Model results I

Degrees of freedom

P-value (Chi-square)

```
> summary(fit)
The SEM output:
lavaan 0.6-19 ended normally after 43 iterations
  Estimator
                                                       MT.
  Optimization method
                                                   NI.MINB
  Number of model parameters
                                                       26
  Number of observations
                                                      165
Model Test User Model:
                                                   64.549
  Test statistic
```

52

0.114

Model results II

Model Test Baseline Model:

Test statistic	343.181
Degrees of freedom	66
P-value	0.000

User Model versus Baseline Model:

Comparative Fit In	dex (CFI)	0.955
Tucker-Lewis Index	(TLI)	0.943

${\tt Loglikelihood} \ \ {\tt and} \ \ {\tt Information} \ \ {\tt Criteria:}$

Loglikelihood user model (HO) -2758.904

Model results III

Loglikelihood	unrestr	ricted mo	del	(H1)	-2726.629
Akaike (AIC) Bayesian (BIC Sample-size a		Bayesian	(S)	ABIC)	5569.807 5650.562 5568.246

Root Mean Square Error of Approximation:

RMSEA		0.038
90 Percent confidence	interval - lower	0.000
90 Percent confidence	interval - upper	0.066
P-value H_O: RMSEA <=	0.050	0.730
P-value H_O: RMSEA >=	0.080	0.004

Standardized Root Mean Square Residual:

Model results IV

			0.062
			0.002
: :			
			Standard
			Expected
rated (h1)	model	St	ructured
Estimate	Std.Err	z-value	P(> z)
0.319	0.059	5.362	0.000
0.375	0.057	6.562	0.000
0.407	0.054	7.509	0.000
	Estimate 0.319 0.375	Estimate Std.Err 0.319 0.059 0.375 0.057	Estimate Std.Err z-value 0.319 0.059 5.362 0.375 0.057 6.562

Model results V

depress4	0.418	0.047	8.911	0.000
depress3	0.442	0.063	6.970	0.000
depress2	0.336	0.048	7.031	0.000
depress1	0.226	0.047	4.849	0.000
extroversion =~				
personality16	0.835	0.117	7.165	0.000
personality11	0.637	0.112	5.698	0.000
personality6	-0.541	0.104	-5.183	0.000
personality1	-0.458	0.099	-4.629	0.000

Regressions:

	Estimate	Std.Err	z-value	P(> z)
depression ~				
extroversion	0.016	0.119	0.131	0.896
friends.degree ~				

Model results VI

extroversion	0.336	0.093	3.598	0.000
depression ~				
friends.degree	0.026	0.098	0.263	0.793
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.depress7	0.399	0.048	8.390	0.000
.depress6	0.343	0.043	7.961	0.000
.depress5	0.286	0.038	7.488	0.000
.depress4	0.182	0.028	6.438	0.000
.depress3	0.409	0.053	7.775	0.000
.depress2	0.232	0.030	7.745	0.000
.depress1	0.252	0.029	8.531	0.000
.personality16	0.741	0.162	4.586	0.000
.personality11	1.032	0.145	7.111	0.000

Model results VII

```
.personality6
                    0.968
                              0.127
                                        7.606
                                                  0.000
.personality1
                    0.921
                              0.115
                                        7.990
                                                  0.000
.friends.degree
                              0.104
                                        8.482
                                                  0.000
                    0.881
.depression
                     1.000
 extroversion
                     1.000
```

Conclusions

° The model fits the data well ($\chi^2=64.549, df=52, p=0.114, CFI=0.955, TLI=0.943, RMSEA=0.038, SRMR=0.062$).

- Extrovert personality is associated with popularity (degree statistic).
- Neither extroversion nor popularity is related to depression.

Mediation/indirect effect calculation and testing

```
> path.networksem(fit, 'extroversion', 'friends.degree',
    'depression')
predictor
            "extroversion"
mediator
            "friends.degree"
            "depression"
outcome
apath
            "0.3362325"
bpath
            "0.02566646"
indirect
            "0.008629899"
            "0.03150774"
indirect_se
            "0.2738978"
indirect z
```

Use of online app

- The same analysis can be conducted using an online app we developed.
- o https://bigsem.psychstat.org/app/
- It allows the analysis through drawing a path diagram.
 - Organize data
 - Draw a path diagram
 - ▶ Conduct the analysis

Interface after login

BIGSEM

Welcome Johnny Zhang » Current Project | New Project | List All Projects | Apps | Manual | Q & A

Project: SEM-network

Path Diagram Diagram It	Upload Files	New File		
☐ File name	Operations	File Actions	File size	Time
☐ apaexample.RData		Edit View Delete Download Rename History	13.18 KB	2025.08.05
apa.ex1.sem.out		Edit View Delete Download Rename History	9.2 KB	2025.08.04
apa.ex1.diag	₩	Edit View Delete Download Rename History	8.97 KB	2025.08.04
apa.ex1.sem		Edit View Delete Download Rename History	1.01 KB	2025.08.04

Organize data

- Both non-network and network data can be uploaded as separated .csv files.
- They can then be combined to a list and saved for use with our online tool.

BIGSEM: SEM FOR BIG DATA

Welcome Johnny Zhang » Current Project | New Project | List All Projects | Apps | Manual | Q&A

Organize network data

Analysis Menu

Draw a path diagram

Control the analysis

Software:

NetworkSEM ~

Data File:

apaexample.RData V

Control:

netstats=degree std.lv=TRUE

Output

```
    Slight difference

  extroversion =~
    personality16
                                          7.165
                                                   0.000
                       0.694
                                0.097
    personality11
                       0.530
                                0.093
                                          5.698
                                                   0.000
    personality6
                      -0.480
                                0.093
                                         -5.183
                                                   0.000
    personality1
                      -0.430
                                         -4.629
                                                   0.000
                                0.093
                       0.336
    friends.degree
                                0.093
                                          3.598
                                                   0.000
Regressions:
                              Std.Err
                    Estimate
                                        z-value
                                                 P(>|z|)
  depression ∼
    extroversion
                       0.016
                                0.119
                                          0.131
                                                   0.896
    friends.degree
                       0.026
                                0.098
                                          0.263
                                                   0.793
```

Multiple networks (example 2)

- Self-reported friendship and social media
- Degree, closeness, and betweenness

R code I

```
load("network.RData")
## specify the model
ex2 model <-'
  extroversion = personality1 + personality6
               + personality11 +personality16
  conscientiousness = personality2 + personality7
                     + personality12 +personality17
 happiness = ^{\sim} happy1 + happy2 + happy3 + happy4
  friends ~ extroversion + conscientiousness
  happiness ~ friends + wechat + extroversion +
      conscientiousness
,
```

R code II

```
## fit the model
fit2 <- sem.net(ex2.model, data = network, std.lv=T,
  netstats = c('degree', 'closeness', 'betweenness'),
  netstats.rescale = TRUE)
summary(fit2)</pre>
```

Regressions:

	Estimate	Std.Err	z-value	P(> z)
happiness ~				
conscientisnss	2.132	12.241	0.174	0.862
extroversion	-2.368	12.622	-0.188	0.851
friends.degree ~				
extroversion	1.756	0.484	3.627	0.000
friends.closeness ~				
extroversion	1.630	0.462	3.528	0.000

R code III

friends.betweenness	~			
extroversion	1.557	0.446	3.495	0.000
friends.degree ~				
conscientisnss	-1.682	0.433	-3.887	0.000
friends.closeness ~				
conscientisnss	-1.604	0.413	-3.882	0.000
friends.betweenness	~			
conscientisnss	-1.541	0.399	-3.864	0.000
happiness ~				
friends.degree	0.505	4.220	0.120	0.905
friends.clsnss	0.695	1.778	0.391	0.696
frinds.btwnnss	0.234	1.161	0.201	0.840
wechat.degree	0.098	0.240	0.411	0.681
wechat.closnss	-0.433	0.240	-1.806	0.071
wechat.btwnnss	0.350	0.210	1.669	0.095

Example 3: mediation between gender and smoking behavior

Node-based analysis through latent space models

$$\begin{cases} y_{ij} & \sim \mathsf{Bernoulli}(p_{ij}) \\ \mathsf{logit}(p_{ij}) & = \alpha - ||\mathbf{z}_i - \mathbf{z}_j|| \end{cases}$$

id	p1	p2	р3	p4	p5	р6					
p1	NA	0	1	1	0	1					
p2	0	NA	1	0	1	0					
рЗ	1	1	NA	0	1	1					
p4	1	0	0	NA	0	1					
р5	0	1	1	0	NA	1					
p6	1	0	1	1	1	NA					
		id	Z	1	z2		gender	age	smoke	alcohol	extraversion
		p1	-5.	65	-1.15		М	20	Υ	Υ	1.9
		p2	-6.	49	-2.27		F	21	N	Υ	8.0
		рЗ	1.	18	2.66		F	20	N	N	0.7
		p4	-4.	37	0.	05	М	19	N	Υ	0.5
		р5	1.3	33	3.52		М	20	N	Υ	2.1
		p6	-10	.45	-1.71		М	21	Υ	N	2.3

Mediation effect

- Dimension reduction method
- Overall mediation effect $(\sum a_d b_d)$, individual dimension unexplainable

Model estimation I

- Five latent dimensions seemed to work best.
- The function sem.net.lsm can be used.
- The outcome "smoke" is a binary variable.

Model estimation II

• The total mediation effect can be calculated.

```
## Get the parameter information
parest <- fit3$estimates$sem.es@ParTable</pre>
## indirect effect
indirect_effects <- sum(parest$est[2:6]*parest$est[7:11])
## se of the indirect effect
indirect_se <- sqrt(sum(parest$se[2:6]^2 * parest$est[7:11]^2
      + parest$se[7:11]^2 * parest$est[2:6]^2))
## 7-score
z_score <- indirect_effects / indirect_se</pre>
## p-values
p_value <- 2 * (1 - pnorm(abs(z_score)))</pre>
```

Model estimation III

```
> indirect_effects
[1] -0.4185963
> z_score
[1] -2.285045
> p_value
[1] 0.02231016
```

Results and conclusions

- Gender -> Friendship network -> smoking
- The estimated mediation effect was -0.42, which was significant based on the Sobel test.
- The estimated direct effect was −1.21, also significant.
- Therefore, the friendship network partially mediates the relationship between gender and smoking.

Example 4: Longitudinal network analysis

- Network data can be collected across time.
- Teenage Friends and Lifestyle Study (Michell and West, 1996; Pearson and Michell, 2000)
 - A total of 129 pupils with 73 boys and 56 girls.
 - Networks
 - Friendship network formed by asking each student to name up to six friends.
 - Only 13 out of the 129 students named the maximum number of six friends, with the median number of named friends to be 3 and the average number of friends to be 3.5.
 - 2 standing for "best friend", 1 for "just a friend", and code 0 for "no friend". The average number of "best friend" was 0.67 and the average number of "just a friend" was 2.81 for the first wave of data.
 - A binary network was created with 1 being best friend or just a friend.

Network plot

A longitudinal mediation model

Teenage Friends and Lifestyle Study

Edge-based method

id	p1	p2	рЗ	p4	p5	p6	gender	age	smoke	alcohol	extraversion
р1	NA	0	1	1	0	1	М	20	Υ	Y	1.9
p2	0	NA	1	0	1	0	F	21	N	Y	8.0
рЗ	1	1	NA	0	1	1	F	20	N	Ν	0.7
p4	1	0	0	NA	0	1	М	19	N	Υ	0.5
р5	0	1	1	0	NA	1	М	20	N	Υ	2.1
p6	1	0	1	1	1	NA	М	21	Υ	Z	2.3
							+				
						Node1	Node 2	Edge	age.diff	ext.avg	
						p1	p2	0	1	1.35	
						p1	р3	1	0	1.3	
						p1	p4	1	-1	1.2	
						p1	p5	0	0	2	
						p1	p6	1	1	2.1	
						p2	р3	1	1	1.5	
						p2	p4	0	2	1.3	
						р5	p6	1	-1	2.2	
						_					

Model estimation

The function sem.net.edge is used.

```
load("ex4.data.RData") ## Glasgow data
ex4.model <- '
  friends2 ~ a*sport1 + m*friends1
  friends3 ~ a*sport2 + m*friends2
  sport2 ~ x*sport1
  sport3 ~ x*sport2
  smoke2 ~ y*smoke1 + b*friends1
  smoke3 ~ y*smoke2 + b*friends2 + c*sport1
  ab := a*b
fit4 <- sem.net.edge(ex4.model, data = ex4.data,
                     type='difference',
                     netstats.rescale = T)
summary(fit4)
```

Results

• A significant yet small effect.

Use of the online app

Software

- General purpose software program for SEM with networks
 - ▷ R package neworksem (available on CRAN with the latest development on Github)
 - Online app: https://bigsem.psychstat.org/app
 - ▶ Manual: https://bigsem.org (Xu & Zhang, 2025; SEM)

Discussion

- Simultaneously analyzing network and non-network data can
 - ▶ Inform the formation of networks.
 - Understand the effects of networks on behaviors
- We utilized a two-stage method for each model estimation and interpretation.
- Statistical properties still need further investigation, particularly for the edge based method.
- Future directions
 - Brain network
 - Psychometric network
 - Improve software

Other methods

- Traditional network analysis often focuses on modeling the network itself.
 - ▶ Zhang et al. (2018): longitudinal clustering
- We have developed methods and models to study the association between networks and non-network variables.
 - ▷ Liu, Jin & Zhang (2018): joint modeling network latent space and factor space
 - $^{
 hd}$ Che, Jin & Zhang (2021), Liu, Jin & Zhang (2021): Model network as a mediator
 - ▷ Xu & Zhang (2025): SEM with networks
 - ▷ Xu & Zhang (under review): Dynamic network with covariates
- Other considerations
 - Qu, Liu & Zhang (2020): Permutation test
 - ▷ Xu, Hai, Yang & Zhang (2023): Missing data

Acknowledgment

- Current and former students
 - Chang Che, Meta
 - ▶ Haiyan Liu, UC Merced
 - Wen Qu, Fudan University
 - Ziqian Xu, University of Notre Dame

Colleagues

- ▶ Ick-Hoon Jin, Yonsei University
- Lijuan Wang, University of Notre Dame
- ▶ Ke-Hai Yuan, University of Notre Dame

Funding

- ▶ Institute of Education Sciences (R305D210023)
- Notre Dame Global
- Franco Family Institute for Liberal Arts and the Public Good

We value your feedback

- We need your feedback to improve our software programs.
- If you can fill out our survey here: https://forms.gle/ecExNjimzPonQedE7, you can get a \$25 Amazon gift card.

Q & A

- For more information
 - Zhiyong Zhang (zzhang4@nd.edu)
 - ▶ Website: https://bigdatalab.nd.edu

